Close Thu: HW 13.2 Close Fri: HW 13.3
Exam 2 is Tues. It covers
10.1-10.3, 12.4: Analyzing functions
11.1/2: Derivatives involving e^{x} and $\ln (\mathrm{x})$
12.1,12.3: Antiderivatives, finding C
13.2-13.3: Definite Integrals and areas

13.2 Definite Integrals (Continued)

Entry Task: Evaluate

1. $\int_{1}^{5} \frac{3}{4 x^{2}} d x$
2. $\int_{0}^{1} e^{x / 3} d x$

Recall:

Fundamental Theorem of Calculus

If $F(x)$ is any anti-derivative of $f(x)$, then

$$
\int_{a}^{b} f(t) d t=F(b)-F(a)
$$

Step 1: Find any antiderivative, $F(x)$.
Step 2: Compute $F(b)$ and $F(a)$
Step 3: Subtract

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

3. $\int_{1}^{4} \sqrt{x} d x$
4. $\int_{1}^{e} \frac{5}{x} d x$

13.3 Area Between Curves and Applications

Example: Find the area bounded between $y=2 x$ and $y=x^{2}$.

Example (from HW):

Find the area of the region bounded by

$$
y=\sqrt[3]{x}, y=2-x \text { and } x=8 .
$$

To find area between curves

1. Draw an accurate picture.

Find intersections and identify

$$
\begin{aligned}
& f(x)=\text { "top function" } \\
& g(x)=\text { "bottom function" }
\end{aligned}
$$

2. Compute:

$$
\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x=\int_{a}^{b} f(x)-g(x) d x
$$

Old Exam Question:
Find the area of the region bounded by

$$
y=x^{2} \text { and } y=x+6
$$

Example: Suppose

$$
\begin{array}{ll}
M R(x)=-x^{2}+2 x+5 & \text { dollars/item } \\
M C(x)=\frac{5}{2} x & \text { dollars/item }
\end{array}
$$ where x is in hundreds of items, and assume FC = 3 hundred dollars.

What do the following represent?
a. Area under MR from 0 to 2.
b. Area under MC from 0 to 2.

c. Area between MR \& MC from 0 to 2 .

Note:
The area between $f(x)$ and $g(x)$ gives change in difference between antiderivatives from $x=a$ to $x=b$.

If you want to get Profit directly from the graph of MR and MC:

1. Find the area between $M R$ and $M C$ from 0 to your desired quantity.
2. If $M R>M C$ treat it as positive.
3. If $M R<M C$ treat it as negative.
4. Don't forget to subtract FC.

Example (from HW):

Example:

At time $\mathrm{t}=0$ minutes, a Red and a Green balloon are next to each other at a height of 60 feet. The rate of ascent of each balloon is given by

$$
\begin{array}{ll}
R^{\prime}(t)=-\frac{1}{2} t^{2}+4 t & \text { feet } / \mathrm{min} \\
G^{\prime}(t)=t^{3 / 2} & \text { feet } / \mathrm{min}
\end{array}
$$

These graphs intersect at $\mathrm{t}=4$ minutes. What do the following represent?

a. Area under $R^{\prime}(t)$ from 0 to 4.
b. Area under $G^{\prime}(t)$ from 0 to 4.
c. Area between from 0 to 4 .

Note: The last example is the exact same idea as getting profit from MR and MC.

If you want to get distance between two balloons directly from the graphs of their derivatives:

1. Find between the derivatives from 0 to the desired time.
2. Whatever deriv. is on top is the balloon going faster (treat that area as positive if that is the balloon you are treating as ahead).

Example: Find the area of the region

 bounded between these curves.$$
\begin{aligned}
& y=x^{2}-8 x+24 \\
& y=-x^{2}+8 x
\end{aligned}
$$

You do: Find the area of the region bounded by the y -axis and

$$
\begin{aligned}
& y=14-2 x \\
& y=2+x .
\end{aligned}
$$

If x is in hundreds of items and

$$
\begin{array}{ll}
y=M R(x)=14-2 x & \text { \$/item. } \\
y=M C(x)=2+x & \text { \$/item. }
\end{array}
$$

What does the area you just found represent? What additional information would you like to know?

